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We present the analytic model for the evolution of bubbles of arbitrary density ratio in Rayleigh–Taylor and
Richtmyer–Meshkov instabilities. The model is the generalization of Zufiria’s potential theory, which is based
on the velocity potential with a point source and previously applied only for the interface of infinite density
ratio. The analytic expressions for asymptotic solutions of bubbles are obtained. The predictions from the
Zufiria model agree well with the numerical results not only for the bubble velocity, but also for the bubble
curvature. It is found that the asymptotic curvature of a Richtmyer–Meshkov bubble is smaller than that of a
Rayleigh–Taylor bubble for all Atwood numbers.
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The phenomenon of unstable interfacial fluid mixing oc-
curs frequently in basic sciences and engineering applica-
tions. A gravity-driven interfacial instability is known as the
Rayleigh–Taylor(RT) instability [1] and a shock-driven in-
terfacial instability is known as the Richtmyer–Meshkov
(RM) instability [2]. Both instabilities play important roles in
many fields ranging from astrophysics to inertial confine-
ment fusion, and are subjects of intensive current research. A
wide range of literature on these fields is available, and can
be found and traced in Refs.[3–15].

Small perturbations at these unstable interfaces grow into
nonlinear structures in the form of bubbles and spikes[3]. A
bubble(spike) is a portion of the light(heavy) fluid penetrat-
ing into the heavy(light) fluid. At later times, a bubble in the
RT instability attains a constant velocity, while a RM bubble
has a decaying growth rate. Eventually, a turbulent mixing
caused by vortex structures around spikes breaks the ordered
fluid motion.

The theoretical models for comprehensive descriptions of
the motion of bubbles at unstable interfaces are potential
flow models proposed by Layzer[4] and Zufiria [5]. Both
Layzer and Zufiria models approximate the shape of the in-
terface near the bubble tip as a parabola and give a set of
ordinary differential equations to determine the position, ve-
locity, and curvature of the bubble. The main difference be-
tween the two models is that the velocity potential in the
Layzer model is an analytical function of sinusoidal form,
while in the Zufiria model, it has a point source(singularity)
and is derived from the complex conformal mapping.

Since Layzer[4] proposed the model for RT instability of
infinite density ratio, it has been studied by many people
[7–10,13–15] and recently extended to the system of finite
density ratios[13–15]. However, the Zufiria-type model has
been less developed than the Layzer model, due to the so-
phisticated form of velocity potential, and so far, is limited to
the case of infinite density ratio[12]. In this communication,
we generalize the Zufiria model to the unstable interface of
arbitrary density ratio and obtain analytic expressions for
asymptotic solutions for bubbles in RT and RM instabilities.

We show a surprising result that the predictions from the
Zufiria model for asymptotic curvatures of a RT bubble and a
RM bubble are different from each other and are quantita-
tively larger than the results of the Layzer model[13,14].
This raises the issue for the validity of modelings, and there-
fore direct comparisons of the solutions of the models with
the numerical results are presented.

Note that the solution of single-mode bubbles at unstable
interfaces not only has its own fundamental importance, but
also is a key factor in the dynamics of the bubble merger in
the evolution of multimode interfaces[6,8].

We consider an interface in a vertical channel filled with
two fluids of different densities in two dimensions. The den-
sity of upper and lower fluids is denoted asr1 and r2, re-
spectively. From the assumption of potential flows, there ex-
ist complex potentialsW1szd=f1+ ic1 for the upper fluid and
W2szd=f2+ ic2 for the lower fluid, wheref is the velocity
potential andc the stream function. In the laboratory frame
of reference, the location of the bubble tip isZstd=Xstd
+ iYstd with Ystd=L /2, where L is a channel width. The
bubble moves in thex direction with tip velocityU. It is
convenient to choose a frame of referencesx̂, ŷd moving to-
gether with the tip of the bubble. In other words, the frame of
reference moves with the bubble velocityU. In this moving
frame, the location of the bubble tip isx̂= ŷ=0 and the inter-
face near the bubble tip is approximated as

hsx̂,ŷ,td = ŷ2 + 2Rstdx̂ = 0, s1d

whereR is the local radius of curvature.
The evolution of bubble can be determined by the kine-

matic condition

Dhsx̂,ŷ,td
Dt

= 2
dR

dt
x̂ + 2Ru+ 2ŷv = 0, s2d

and the Bernoulli equation*Electronic address: sohnsi@kangnung.ac.kr
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r1F ]f1

]t
+

1

2
s¹f1d2 + Sg +

dU

dt
Dx̂G

= r2F ]f2

]t
+

1

2
s¹f2d2 + Sg +

dU

dt
Dx̂G , s3d

whereu and v are x̂ and ŷ components of the interface ve-
locity, andg is an external acceleration.

Extending Zufiria’s model, we take complex potentials

W1sẑd = Q1 logf1 − e−ksẑ+Hdg − Uẑ, s4d

W2sẑd = Q2 logf1 − e−ksẑ−Hdg + sK − Udẑ, s5d

wherek=2p /L is the wave number. Note thatf1→−Ux̂ as
x̂→ +`, andf2→e−kHsK−Udx̂ as x̂→−`.

Expanding Eqs.(4) and (5) in powers ofẑ, we have

W1 = Q1o
i=0

`
ci

i!
ẑi − Uẑ, s6d

W2 = Q2o
i=0

`
c̃i

i!
ẑi + sK − Udẑ. s7d

The expressions forcisHd are given in Ref.[12] and c̃isHd
=cis−Hd. The relationdWi /dẑ=u− iv, i =1, 2, gives the ex-
pressions for the interface velocity taken from the upper and
lower fluids. Substituting these expressions into Eq.(2) and
satisfying up to first order inx̂, it gives

U = c1Q1 = c̃1Q2 + K, s8d

dR

dt
= − Q1s3c2 + c3RdR= − Q2s3c̃2 + c̃3RdR. s9d

Using Eqs.(4) and(5), the first- and second-order equations
in x̂ of Eq. (3) are

sc1 + c2Rd
dQ1

dt
+ Q1sc2 + c3Rd

dH

dt
− Q1

2c2
2R+ g

=
1 − A

1 + A
Fsc̃1 + c̃2Rd

dQ2

dt
+

dK

dt

+ Q2sc̃2 + c̃3Rd
dH

dt
− Q2

2c̃2
2R+ gG , s10d

Sc2

2
+ c3R+ c4

R2

6
DdQ1

dt
+ Q1Sc3

2
+ c4R+ c5

R2

6
DdH

dt
+

Q1
2

2
F1

=
1 − A

1 + A
FS c̃2

2
+ c̃3R+ c̃4

R2

6
DdQ2

dt

+ Q2S c̃3

2
+ c̃4R+ c̃5

R2

6
DdH

dt
+

Q2
2

2
F2G , s11d

where

F1 = c2
2 − 2c2c3R+ s3c3

2 − 4c2c4d
R2

3
,

F2 = c̃2
2 − 2c̃2c̃3R+ s3c̃3

2 − 4c̃2c̃4d
R2

3
,

and A=sr1−r2d / sr1+r2d represents the Atwood number.
Equations(8)–(11) determine the dynamics of the bubbles of
finite density contrast.

Sohn and Zhang[12] showed that, forA=1, the linear
theory for Zufiria’s model, in small amplitudes or early
times, agrees with the result of the linearized Euler equations
for both RT and RM instabilities. The linear theory for Zufir-
ia’s model forA=1 can be directly extended to the general
case ofA,1, using Eqs.(8)–(11). The details of its deriva-
tion will be given elsewhere.

We now find the asymptotic solutions for bubbles. For a
bubble in RT instability, all time derivatives of variables in
Eqs.(9)–(11) converge to zero at a later time. Then, from Eq.
(9), we have

3c2 + c3R→ 0 and Q2 → 0, s12d

and Eqs.(10) and (11) reduce to

sQ1c2d2R→ 2A

1 + A
g and F1 → 0. s13d

Solving these equations with Eq.(8), the asymptotic solution
for a bubble of RT instability is

R→
Î3

k
, H → 1

k
lns2 +Î3d, Q1 → 2

31/4Î 2Ag

s1 + Adk3 ,

U →
Î6 + 4Î3

2 +Î3
Î 2Ag

3s1 + Adk
, Q2 → 0, K → U. s14d

The functional form of the asymptotic bubble velocity in
Eq. (14) is similar to the solution of the Layzer model, ob-
tained by Goncharov[13], except the factorÎ6+4Î3/s2
+Î3d=0.963. On the other hand, the asymptotic solutions for
the bubble curvature of two models have a large quantitative
difference. Denoting the bubble curvature asj=1/R, the so-
lution of the Layzer model isjLayzer→k/3, while in the
Zufiria model,jZufiria→k/Î3 from Eq.(14).

The analytic solutions of the models are validated by
comparing with numerical results. In fact, the numerical re-
sults for the bubble curvature of finite density ratio are very
rare. The author[16] recently performed the numerical simu-
lations for RT-type instability by the vortex method and re-
ported the results, including the bubble curvature, for several
Atwood numbers. Table I is the comparison of the numerical
results for the asymptotic velocity of a RT bubble in Ref.

TABLE I. Asymptotic bubble velocities of RT instability.

A Unum UZufiria ULayzer

0.05 0.169 0.172 0.178

0.3 0.370 0.378 0.392

0.7 0.500 0.505 0.524

1.0 0.540 0.556 0.577
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[16] with the theoretical predictions from Zufiria’s model
and Layzer’s model for the Atwood numbers,A=0, 0.3, 0.7,
and 1. In Table I, the velocity is scaled byÎg/k and has a
dimensionless unit. We see that the predictions from the
Zufiria model are in excellent agreement with the numerical
results for all cases. In Table II, we compare the theoretical
predictions for the asymptotic curvature of a RT bubble from
two models with the numerical results in Ref.[16]. The cur-
vature in Table II is dimensionless, scaled by the wave num-
ber k. The numerical solutions for the bubble curvature con-
verge to limits between 0.5 and 0.55. Table II shows that the
Zufiria model provides a good prediction for the bubble cur-
vature, while the prediction from the Layzer model is too
small for the numerical results.

For a bubble in RM instability,g is set to 0. At a later
time, the bubble velocity can be expressed asU,e / ta. From
Eq. (8), we haveQ1,d / ta with c1d=e. From Eqs.(9)–(11),
one concludes thata is equal to 1, andQ2,t / tb, b.1, and
K,e / t, using the fact thatdR/dt and dH/dt have to go to
zero faster than 1/t. Then, at late time, Eqs.(9)–(11) become

3c2 + c3R→ 0, s15d

sc1 + c2Rd + dc2
2R−

1 − A

1 + A
c1 → 0, s16d

c2 + 2c3R+
1

3
c4R

2 − dF1 → 0. s17d

Finding the expression ford from Eq.(16) with Eq. (15) and
substituting it to Eq.(17), we obtain a cubic polynomial

s3 − Adl3 − s21 + 9Adl2 + s3 + 15Adl − 4A = 0, s18d

wherel=ekHst→`d. The polynomial(18) has one real root for
A.0.0376. For 0øAø0.0376, it has three real roots, but
only one of them is larger than 1, which is taken for our
solution. The analytic expression of the solution for Eq.(18)
is lengthy and is not given here. The solution for Eq.(18) is
an increasing function with respect toA, having the values,
6.85 atA=0 and 14.38 atA=1. Then, the asymptotic solution
for a bubble in RM instability is

R→ 3sl − 1d
ksl + 1d

, H → 1

k
ln l, Q1 ,

sl − 1d2ssA + 3dl − 2Ad
3s1 + Adl2k2t

,

U , S A + 3

3s1 + Ad
−

1

l
+

2A

3s1 + Adl2D 1

kt
, K → U. s19d

The solution for the asymptotic bubble velocity in Eq.

(19) has the correction terms, −1/l+2A/ s3s1+Adl2d, to the
solution of the Layzer model[13]. The coefficient of 1/kt in
the expression of the asymptotic velocity in Eq.(19) de-
creases from 0.854 atA=0 to 0.599 atA=1. Thus, the pre-
diction for the asymptotic growth rate from the Zufiria model
is about 15% smaller than that from the Layzer model for
A=0 and 10% smaller forA=1.

In the Zufiria model, the asymptotic bubble curvature of
RM instability is different from that of RT instability, while
the Layzer model gives the same solutionjLayzer→k/3 for
both instabilities. Moreover, the asymptotic curvature of a
RM bubble in the Zufiria model depends on the Atwood
number and is smaller than that of a RT bubble for allA.
Note that the bubble curvature of RM instability,jZufiria
→ksl+1d / (3sl−1d), is a decreasing function with respect to
A, sincelsAd is an increasing one.

In Fig. 1, we compare the asymptotic solution for the
bubble velocity of RM instability from the Zufiria model
with the numerical results[16] for the Atwood numbers,A
=0, 0.3, 0.7, and 1. The solid curves in Fig. 1 come from the
asymptotic solution(19), not from the numerical solution of
Eqs. (8)–(11). Figure 1 shows that the growth rates of the
RM bubble decay to zero for all cases and the decaying rate
is faster for a larger Atwood number. The predictions from
the Zufiria model fit well with the numerical results at late
time. Although it is not plotted in Fig. 1, the predictions from
the Layzer model for the asymptotic growth rate are slightly
larger than the solutions of the Zufiria model, as mentioned
above. Table III is the comparison of the numerical results
for the asymptotic curvature of a RM bubble with the theo-
retical predictions from two models. The curvature in Table
III has a dimensionless unit, similarly as in Table II. The
predictions from the Zufiria model are in relatively good
agreement with the numerical results, which converge to lim-
its between 0.45 and 0.5. From Table III, we observe that, in
the Zufiria model, the asymptotic bubble curvatures of RM
instability are smaller than the RT cases for all Atwood num-

TABLE II. Asymptotic bubble curvatures of RT instability.

A jnum jZufiria jLayzer

0.05 0.506±0.002 0.577 0.333

0.3 0.536±0.004 0.577 0.333

0.7 0.545±0.006 0.577 0.333

1.0 0.509±0.006 0.577 0.333

FIG. 1. Bubble velocities of RM instability. The solid curves are
the theoretical predictions from Zufiria’s model for the asymptotic
growth rate of bubble forA=0, 0.3, 0.7, and 1 from above to below.
The dashed curves are the numerical results in Ref.[16].

DENSITY DEPENDENCE OF A ZUFIRIA-TYPE MODEL… PHYSICAL REVIEW E 70, 045301(R) (2004)

RAPID COMMUNICATIONS

045301-3



bers and this behavior is in accordance with the numerical
results.

In summary, the Zufiria-type model has been extended to
the unstable interfaces of finite density ratio and the
asymptotic solutions of bubbles are obtained for RT and RM
instabilities. The predictions for asymptotic bubble curva-

tures, as well as asymptotic bubble velocities, from Zufiria’s
model agree better with the numerical results than Layzer’s
model. The quantitative differences between the two models
for the predictions of solutions come from the choice of po-
tentials, and the Zufiria-type potentials are more appropriate
for the description of unstable interfaces than the Layzer-
type potentials. The Zufiria model also theoretically validates
the recent numerical result that the asymptotic curvature for
a RM bubble is smaller than that for a RT bubble for all
Atwood numbers. Therefore, we conclude that, at late time,
the bubble front of RM instability is larger than that of RT
instability.
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TABLE III. Asymptotic bubble curvatures of RM instability.
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